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SUMMARY 
The past decade has known an increasing interest in the solution of the Euler equations on unstructured grids 
due to the simplicity with which an unstructured grid can be tailored around very complex geometries and be 
adapted to the solution. It is desirable that the mesh can be generated with minimum input from the user, 
ideally, just specifying the boundary geometry and, perhaps, a function to prescribe some desired mesh size. 
The internal nodes should then be found automatically by the grid generation code. The approach we 
propose here combines the Delaunay triangulation with ideas from the advancing front method of Peraire 
et al. and Lijhner et al. Both methods are briefly reviewed in Section 1. Our method uses a background grid to 
interpolate local mesh size parameters that is taken from the triangulation of the given boundary nodes. 
Geometric criteria are used to find a set of nodes in a frontal manner. This set is subsequently introduced into 
the existing mesh, thus providing an updated Delaunay triangulation. The procedure is repeated until no 
more improvement of the grid can be achieved by inserting new nodes. 

KEY WORDS Unstructured grids Delaunay triangulation Advancing front Internal node generation 

1. REVIEW OF PREVIOUS METHODS 

1.1. The advancing front method 

In the advancing front method,',' an initial list of frontal faces between boundary nodes that 
represents the boundaries of the domain is established. The smallest face from all fronts is taken as 
the base of a triangle to be formed. An ideal third node to close the triangle is constructed, in 
accordance with parameters interpolated on a background mesh that the user specifies. All the 
other nodes of the existing triangulation that are within a certain radius from the new node are 
placed in a list, sorted by distance. The ideal node and a few auxiliary nodes are appended to the 
list of possible nodes. The new triangle is formed with the first node in the list for which the newly 
inserted faces would not intersect any already existing ones. The front is then updated and the 
process repeated until all fronts have collapsed, leaving no gaps to be filled. 
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As can be seen, a large amount of sorting and searching is needed. Especially, the check for 
intersecting faces is inherently an operation of O(NZ), though the cost can be kept in check with the 
use of a sophisticated data structure. Numerical experiments in three dimensions3 show that the 
computational cost is proportional to N log N with N tetrahedra in the grid; thus, the method is 
asymptotically optimal. The meshes created exhibit a very high degree of regularity after 
smoothing with a Laplacian filter, although the nodes generated may not be connected in an 
optimal way. A connection that is optimal, in several senses, can be guaranteed by using a 
Delaunay triangulation, which we discuss next. 

I .2. The Delaunay triangulation 

A Delaunay triangulation4 uses a node cloud that is already given and a dissection of the 
domain into Voronoi regions. Each node is surrounded by its Voronoi region that comprises that 
part of the plane which is closer to this node than to any other node. The set of boundaries between 
Voronoi regions is called the Dirichlet tesselation and consists of straight line segments that are 
equidistant from the two nodes that are closest to each other across that line. A unique 
triangulation is obtained by connecting the nodes whose Voronoi regions share a common 
boundary. A closer look reveals that this procedure forms a triangle with the three nodes that are 
closest to each other. Each triangle has an associated vertex of the Dirichlet tesselation which is 
the centre of the circumcircle around that triangle. It follows from the construction that this circle 
does not contain any other node of the triangulation. 

It can be shown’ that a Delaunay triangulation is the optimal triangulation for a given cloud, in 
the sense that the minimum angle is maximized in any triangle for all possible choices of diagonals 
between four convex nodes. This leads to some interesting properties of discrete solutions on 
Delaunay triangulations. Rees6 and Barth’ found independently that solving a Laplacian on a 
Delaunay triangulation using a Galerkin finite element method observes a maximum principle. 
Rippas proved that interpolating an arbitrary set of data linearly on a Delaunay triangulation 
minimizes the roughness of the solution. Bakerg showed that Delaunay triangulations satisfy the 
uniformity principle of finite element methods, provided a smooth node cloud is used, thus 
minimizing the truncation error. Of course, this reasoning applies to a set of nodes given a priori. 
A non-optimal triangulation on a better distributed point cloud might have larger minimum 
angles and, hence, give a better solution. The idea pursued with our method is to use a 
Delaunay triangulation with a well-distributed node cloud. 

Watson” gave an algorithm to establish a Delaunay triangulation that reaches the asymp- 
totically optimal count of operations for a triangulation, O(N1og N )  . This algorithm, commonly 
referred to as Bowyer’s algorithm,” consists of a recursive incorporation of all grid points using 
the circle criterion into an already existing Delaunay triangulation. Initially, this can be a convex 
hull consisting of one or two triangles that fully cover the domain. Before introducing a new node, 
all triangles that contain this node in their circumcircle are found and they define the region to be 
retriangulated. In a Delaunay triangulation this cavity is simply connected, and all faces are visible 
from the node to be inserted. One obtains a new Delaunay triangulation connecting all faces of 
the cavity to the new node. After all nodes have been introduced, unwanted triangles outside the 
domain are deleted. Compared to the intersection check required in the advancing front method, 
the Watson/Bowyer algorithm needs only checking for distances. Moreover, the generation 
process is cellwise in the advancing front method and nodewise in Watson/Bowyer, which leads 
to computational gains with the Delaunay approach, as one finds roughly two cells per node in 
two dimensions and about six cells per node in three dimensions. 

Weatherill” proposed a simple way to ensure that the triangulation does not violate any 
required boundary. His a posteriori procedure consists of inserting nodes on the required 
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boundary segments between two neighbouring boundary nodes that are not present in the final 
triangulation until all missing segments have been recovered. This method provides the least 
intrusion of additional nodes into the grid and minimizes the workload as the test is done only 
once after all nodes have been introduced. Costly checking throughout the triangulation process 
can be avoided. Alternatively, a simpler edge swapping procedure to recover required boundary 
edges can be applied in two dimensions that leads to a local violation of the Delaunay criterion. 

The insertion algorithm and the boundary enforcement are facilitated if, in addition to the 
forming nodes of a triangle, the three neighbouring triangles also are stored. We will also make use 
of this extra information while searching on the grid or introducing new nodes. 

1.3. Node placement for Delaunay triangulations 

In itself, a Delaunay triangulation does not provide an interior point cloud. A popular approach 
to overcome this deficiency has been outlined by Holmes and Snyder. A Delaunay triangulation 
of the boundary nodes is taken as an initial grid. Figure 1 gives such a triangulation for the three 
element aerofoil configuration shown in Figure 11. The initial triangulation consists of large, very 
skewed triangles that are found to exceed certain thresholds of maximum area or maximum 
skewness. Holmes and Snyder propose to measure skewness as the ratio of the radius of the 
circumscribed circle over twice the radius of the inscribed circle. 

Once such a bad triangle is detected, it will be refined by the insertion of a new node at the 
circumcentre of that triangle. Refinement is performed on the largest triangle in the grid until all 

Figure 1. Triangulation of boundary nodes, closeup view. The nodes on the boundary of a three element aerofoil are 
connected to nodes on the outer boundary (not shown), nodes on another boundary or nodes on the same boundary 
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triangles are smaller than a first threshold value. Then refinement continues on the skewed 
triangles starting with the one having the largest circumcircle. The final grid is obtained after all 
skewed triangles are smaller than a second area threshold. Refining on skewness acts like an 
implicit mechanism that increases the node density in the close vicinity of boundaries with a finer 
node spacing. 

However, searching for the largest cell or a skewed cell with the largest circumcircle for each new 
node is a rather costly procedure and the skewness criterion is expensive to evaluate since it 
involves three square roots during the calculation of the circle ratio. Also, the grids produced by 
this approach are not as regular as the ones given by the advancing front method. This is due to the 
fact that the refinement process is much more random compared to an ordered frontal advance. 

2. FRONTAL NODE GENERATION 

We introduce here a technique that combines the ideas of refining a Delaunay triangulation of 
boundary nodes with the ideas of frontal advance. In our method, the front will take the form of a 
boundary between a ‘nicely’ triangulated region and a ‘badly’ triangulated region. The method will 
be described for two dimensions, but we believe there will be few obstacles to implementing it in 
three dimensions. 

If we look at a Delaunay triangulation of a set of boundary nodes (as in Figure l), we can 
observe that almost every boundary face is either the short face of a triangle with one very acute 
angle, or else one of the two short faces in a triangle with one very obtuse angle. In accordance with 
our idea of a front that separates nice triangles from bad triangles, we take the boundary to define 
the initial position of such a front. To begin with, we have no nice triangles, but we will introduce 
a layer of well-positioned nodes that will allow the front to advance. 

The construction of the new nodes is an easy task. We simply form an equilateral triangle with 
the frontal face and either stretch or compress it to match better the spacing requirements of the 
background mesh; this gives ideal spacing with the two nodes that form the face. A further check is 
required to make sure the new node is sufficiently distant from the remaining nodes in the grid and 
from the other new nodes. The desired distance is interpolated on a background mesh that 
uniquely specifies the distance between nodes everywhere in the domain. Nodes that exhibit bad 
spacing are either merged with other nodes or discarded. With these new nodes in place, the 
Delaunay algorithm is re-run and will readily accept the proposed, nice triangles as it resents 
skewness in its triangulation. We will name these triangles ‘explicit’ in the following. Also, nice 
triangles between the new nodes will be formed as they have been tested for sufficient spacing as 
well, the ‘implicit’ triangles. In the rest of the domain, Delaunay still has to construct acute cells, 
though with slightly improved shape. 

Again, the short faces of these acute cells denote a frontier between the region with nice cells and 
the region still waiting to be refined (Figure 2), and the process can be repeated until all bad 
triangles have vanished. Hence, the algorithm can be cast into the following steps: 

1. detect all bad triangles in the grid and find their short faces, 
2. find a set of nodes to form nice triangles with the short faces, 
3. check whether the new nodes are not too close to any other node already introduced into the 

4. check whether the new nodes are not too close to any other new node, 
5. retriangulate with the set of new nodes. 

structure, 

The steps are repeated until no more improvement by node insertion can be achieved. 
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2.1. Front detection 

The front consists of the interface between the region of properly refined triangles and the 
unrefined region. A refinement should only take place on a face that has a refinable triangle on one 
side and an unrefinable one on the other. If refining was merely based on side ratios, an obtuse 
triangle in the front would lead to the introduction of three nodes. Figure 3 shows the two nodes 
that would be formed from the two short faces in the front of the obtuse triangle and the node from 
the face of the acute triangle that neighbours the obtuse one. Not that this extra node is badly 
placed, but this node should be formed only in the next stage. The introduction of this third node 
would lead to an irregular front with scattered faces that might not be connected, and the 
subsequent refining would have much of the randomness of Holmes and Snyder's method.13 

A triangle is unrefinable if either it is not skewed or it is skewed but node spacing around the cell 
does not allow further insertion. Checking is simplified by keeping a status flag for each triangle to 
examine each cell only once. It is to be emphasized that contrary to the usual advancing front 
method''' no explicit tracking of the front and, thus, no expensive overhead is required. 

2.2. Node construction 

The ideal node to be placed in the mesh would satisfy the distance criterion with all 
neighbouring nodes, i.e. the distance to all nodes that it will be connected to equals the 
background spacing evaluated at the midpoint between these two. Clearly, this is an ill-posed 

new I front imDlicit I trianales \ 

Figure 2. Explicit triangles (striped) and implicit triangles (squared) that are formed along the old front and build the new 
front 

f 
/ \  

Figure 3. Obtuse triangle along the front with three new nodes formed 
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problem. But even trying to satisfy the distance condition with the two nodes of the frontal face 
leads to a system of two quadratic equations. The task will become more amenable with the 
restriction to isoceles triangles. We will carry out the geometrical construction in an approximate 
manner leading to only one linear equation. 

We approximate the length of the sides 1, and l2  opposite to nodes 1 and 2 by 2JJ31 where the 
altitude 1 is as found in an equilateral triangle. Requiring that this approximated sidelength equals 
the desired spacing h4 evaluated midway between node 3 and the midpoint of the base, M 
(figure 4), we find 

where hM denotes the desired spacing at M, Vh is the local gradient of the background spacing and 
x3, xM are the position vectors of node 3 and point M. As we place the new node along the median, 
we can write 

where n3 is the unit normal on the base pointing towards the triangle to be refined. The altitude for 
a triangle with counterclockwise sense is thus 

1 ’  

Note that in the given form the altitude of the explicit triangle is independent of the length of the 
base. This preserves the thickness of the layer of cells introduced even if the length of the faces 
varies strongly (Figure 9). 

2.3. Searching 

The efficiency of unstructured grid generation methods is very dependent on the way specific 
nodes or cells are found in the grid. For example Watson’s/Bowyer’s algorithm requires the search 
for a circumcircle that contains a new node and interpolation on a background mesh involves 

3 

Figure 4. Short face and construct 713 node. The new node 3 and the spacing reference point 4 lie on the median of the 
face 24 
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finding the background cell that contains the point of interest. As already stated, an implementa- 
tion of Watson’s/Bowyer’s algorithm usually comes with the storage of the neighbours to each 
triangle and the position of its circumcentre. 

Hence, a straightforward way to locate a position in a Delaunay triangulation would be to walk 
along the Dirichlet tesselation from circumcentre to circumcentre closer towards the target. But 
this method does not necessarily converge as a Voronoi vertex can lie outside its associated 
triangle. 

A method of similar computational cost is to walk from cell to cell in the direction of the target. 
As we progress at each step a finite distance towards our point of destiny we must reach our target; 
so this search procedure always converges. 

The direction to turn to is given by the maximum scalar product of the normal on the face and 
the vector from the midpoint of that face to the target (Figure 5). Of course, only two directions 
have to be tested once the search is on its way, also it would be rather wasteful to use unit normals. 
The search is finished when all scalar products are non-positive, indicating that the target lies 
either in the cell or on a face of the cell. 

The cost of this search is O ( J N )  on a mesh with N nodes. However, once the foreground and 
background cells associated with the new node are determined, all of the triangles in the vicinity, 
where most of the remaining operations take place, are found in a few steps. Still, this search 
procedure could also be applied within a specific bin of a tree data structure. 

2.4. Background mesh 

The Delaunay triangulation of all boundary nodes is computed as an initial triangulation to 
begin the node generation process. This triangulation provides at no extra cost a suitable 
background mesh to provide a local value of desired distance between nodes at any point within 
the convex hull. It will be assumed here that this desirable distance is a piecewise linear function of 
position, interpolated between the nodal values of a triangle in the background grid. The spacing 
value at each node is computed as the average distance to its two neighbouring nodes on the 
boundary. 

A linear variation between the fine spacing on a body and the coarse spacing on a far-field 
boundary is obtained when the background triangle connects directly from the interior to the 
exterior boundary. However, along concave contours, it may happen that Delaunay connects 
between finely spaced interior boundaries and the background grid will specify a too large area of 

Figure 5. Scalar product criterion to walk from a cell towards a target 
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fine spacing. Figure 1 gives an example of such an ill-connected background mesh. It shows a 
close-up of a multi-element aerofoil, obscured by the triangles formed inside the elements. A 
clearer view of the configuration can be seen in Figure 9. The triangles leaving the frame are 
connected to the outer boundary. However, the initial triangulation also connects the finely 
discretized trailing edge of the main flap with the lower side of the main aerofoil and implies an 
undesirable high node density in the entire ill-connected area between the two elements. 

The problem can easily be circumvented by the introduction of extra nodes into the background 
mesh. To be consistent with the philosophy of minimal user input, one should have the program 
introduce the necessary nodes and merely ask the user which boundaries he does not want to have 
connected. The procedure will be to detect an illicit liaison and place a background node in 
between. During a subsequent retriangulation, most, if not all, of the triangles shared between the 
two bodies will be broken and few extra nodes will suffice. 

The remaining question is what spacing to apply to these new nodes. One would like the spacing 
to rise smoothly from every boundary node into the domain to match finally the spacing of the 
outer boundary. This corresponds to extrapolating the spacing with an average gradient from 
every boundary node towards the automatically inserted node and take the minimum of all these 
values-an unreasonably costly procedure. 

Fortunately, the Delaunay properties make the task at hand a lot more amenable. If we place 
the new node to break an unwanted triangle at the Voronoi vertex of that triangle, we know that 

Figure 6. Background grid automatically modified by the insertion of four nodes to break up unwanted connectivity. 
Two of these n&es are shown between the main aerofoil and the second flap 
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there is no other node closer to the new node than the three nodes forming that triangle. 
Moreover, the new node is equidistant from both ill-connected boundaries. We then extrapolate 
from the spacing of the more finely discretized boundary using the average gradient of the initial 
triangulation. Figure 6 shows the background mesh modified by automatic insertion. Four nodes 
have been introduced from triangles in the area between the main aerofoil and the main flap. 

2.5. Skewness threshold 

So far, the term ‘bad‘ has been used for long skinny triangles, without specifying on what we 
base this label. From the previous discussion it follows that a criterion is needed that is easy to 
evaluate and that discriminates the faces to be used in the front. An obvious and inexpensive 
choice for quantifying the proportions of a triangle is to look at ratios of the squared sidelength 
over the squared maximum sidelength. A triangle will be called ‘bad‘ once any of its three side 
ratios drops below a threshold. Considering the fact that a triangle is formed by placing a node 
somewhere along the perpendicular bisector of the base, one can estimate threshold values for the 
side ratios. A first estimate can be derived for an acute angled triangle on a zero-gradient 
background with the length of the face matching the background spacing. In this case the 
Delaunay triangulation will always form an equilateral explicit triangle with the base, and an 
implicit triangle with the new node and the distant node of the previous bad triangle. 

Figure 7(a) shows the geometry in question. The worst ’implicit’ triangle is produced when the 
distant node of the acute triangle also lies on the perpendicular bisector. If we let the dashed 
triangle become less and less acute, a will grow and /3 will become smaller. Both angles will be equal 
if b ~0.648,  so that refining an acute triangle with b c 0.646 will make the grid worse. Hence, for 
acute triangles a good threshold is the side ratio of a triangle with b = 0.646 or 

Similar reasoning applies to the obtuse triangle in Figure 7(b). Here the two nodes formed 
perpendicular to the two short faces will be merged subsequently as they are too close to each 
other. Hence, we have to consider the new node to be placed on the angular bisector. The smallest 
angle in the old triangulation was a; in the new triangulation it is /3. Since 2(a + b) = n, matters only 
improve if a < 4 4 .  That is, we should only refine obtuse angled triangles for which the side ratio is 

i4 b w 
(4 

Figure 7. (a) Refining of an acute triangle (dashed) into an equilateral triangle (bottom) and an acute ‘implicit’ triangle 
(top); (b) Refining of an obtuse triangle (dashed) into two triangles (full) 
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It turns out that the quality of the triangulation is somewhat insensitive to the choice of the side 
ratio threshold and any value in the range of the two estimates will give good results. This allows 
one to use the same threshold for both obtuse and acute triangles. The triangulation will change 
with a different threshold but the minimum angles found will remain virtually unchanged. Strong 
gradients in the background grid might lead to the formation of explicit triangles that exceed the 
threshold in the side ratio. Therefore, the altitude of the triangle to be formed will be bounded by 
the altitude of an obtuse angled triangle with the threshold sidelength ratio and the altitude of its 
acute counterpart. 

2.6. Spacing check 

The spacing check balances the mechanism of node introduction due to excessive skewness by 
rejecting or merging nodes; in this way, grid quality is assured for the implicit triangles. We might 
want to reject a new node, because it falls too close to some existing node, or we might want to 
merge two new nodes because they are too close to each other. The two cases have to be dealt with 
separately. 

Looking for close nodes that are already introduced, we can make use of the fact that a 
Delaunay mesh constructed with Watson's/Bowyer's algorithm covers the entire convex hull. We 
can construct an enlarged circle around each triangle which is the circumcircle plus an added rim 
of the required distance for the new node. If the new node does not fall within that enlarged circle, 
the distance between the new node and the nodes of the triangle is at least the required spacing 
(Figure 8). 

Figure 8. A new node (A) is contained in the triangle 146, but closest to the node 2. The enlarged circles 124,132,342 do 
contain A and require testing. The enlarged circle around 456 does not contain A and excludes nodes 4, 5 and 6 from 

testing 
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In a way similar to the tree search during the insertion procedure, the simply connected region 
can be determined where nodes that are already introduced might be too close to a new node. 
Once a new node is found to be too close to another old one, it is discarded from the list. 

One is less fortunate with checking the distance towards the other new nodes that are also 
waiting to be introduced. Along the front, we might find a set of very acute triangles that can lie 
rather oblique to it. The initial front along the boundaries in Figure 1 can serve as a good example. 
New nodes that are too close to each other might not lie in neighbouring triangles and one cannot 
make use of the underlying grid. Extensive search throughout the list of new nodes has to be 
performed, but the list contains only O(, /N)  nodes at a time. This advocates the use of an 
intelligent data structure that provides some kind of bucketing to reduce further the cost of 
searching and will retain an optimal count of operations of O(N log N). Once two new nodes are 
found to be too close, they are merged. This merging is actually the only step in the algorithm that 
introduces irregularity into an initially regular mesh. All other steps are independent of the order 
in which triangles or nodes are encountered. While it is generally not important which neighbours 
are merged, we do want to have preferred merging of the two nodes that are formed from the two 
short faces of an obtuse triangle as shown in Figure 7(b). If one searches backwards through the 
list of new nodes, this pair is encountered first and treated with higher priority. 

In order to achieve large minimum angles, we may tolerate nodes being closer to each other 
than allowed by the background mesh. Otherwise, the skewness mechanism providing refinement 
may be counterbalanced too much. Initially, the number of new nodes is completely determined 
by the number of boundary nodes. While the front propagates outwards, the nodes in the front will 
eventually become too numerous, as the background mesh demands more and more distance 
between the nodes and the spacing check coarsens the front. In this way, liberal spacing will allow 
more completely regular rows with the original number of nodes around the bodies and finer 
spacing will be retained further from the frontal surfaces. On the other hand, being too lax allows 
node insertion where no improvement can be achieved. An optimum value of requiring 60% of the 
background distance between inserted nodes has been found in Reference 14. This value leads to 
the most narrow distributions of minimum and maximum angles around the ideal value of 60". 

It is to be noted that no criterion for too large cells is needed if the front emerges from the finely 
spaced boundaries. The spacing mechanism will gradually coarsen up that front until it meets the 
outer boundary. Further refinement in the field can be left to solution-adaptive interaction with 
the solver. However, the implementation would not pose any problems. If, after retriangulation, 
two connected nodes in the new front are found to lie too far apart, another node can be 
introduced between them. 

2.7. Computational cost 

Suppose that a total of N nodes are generated in such a way that NP new nodes are created every 
time the front advances. Watson's/Bowyer's algorithm takes Ooog N) operations to introduce a 
single node into a triangulation. With a dissecting data structure like a split-tree, the cost of 
searching the list of NP new nodes requires O(logNp) operations. We need N'-P  stages to 
construct the full triangulation; the total cost is thus O(N(p+  1) log N). As p ranges between 0 
and 1, the number of operations necessarily increases by a factor of two in the worst case when all 
nodes are formed in one single stage, compared to a triangulation of specified nodes. Hence, the 
method is asymptotically optimal. 

Actual times are given for the three-element aerofoil case given in Figures 9-12. The initial 
triangulation of the 328 boundary nodes took 0.54 seconds on a DEC 5000/200, i.e 0.0016 sec per 
node. The insertion algorithm created 2018 interior nodes and used 10.9 seconds, i.e 0.0054 sec per 



Figure 9. Grid around three element aerofoil after three rows of nodes have been inserted. Note the coarsening of the 
front in the second row on the upper surface 

Figure 10. Grid around three-element aerofoil 



Figure 11. Close-up of grid around three-element aerofoil 

Figure 12. Detail of grid around three-element aerofoil 
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node. Thus, ignoring the reduced efficiency as the size of the grid increases, generating a new node 
and triangulating it costs about three times as much computer time as the triangulation of a node 
alone. Note that the current implementation does not employ any tree data structure and, 
therefore, the given times could be reduced further. 

3. EXAMPLES 

A classic case for an unstructured grid generator is the grid around a multi-element aerofoil. 
Structured grid generation already requires sophisticated extensions to deal with this problem. 
The background grid for the aerofoil given in Figure 6 was modified by the automatic insertion of 
four nodes. The initial triangulation is boundary conformal without any modifications. 

Figure 9 shows the grid after three rows of nodes have been constructed, the resulting grid is 
shown in Figure 10, a close-up of the aerofoil in Figure 11. The different rows of nodes can be 
identified clearly in the final triangulation. 

On the upper surface of the main aerofoi1,it can be demonstrated how essential the construction 
algorithm of section 2.2 is to grid quality. In the second row the spacing check has eliminated 
several nodes and the length of the faces in the new front varies from normal to double. Still the 
nodes in the third row are aligned evenly, providing nearly equilateral triangles again. The 
disturbances introduced in the second row are completely eliminated in the fourth row. 

The regularity of the grid is entirely due to the frontal insertion, no smoothing filter was applied. 
Figure 12 shows a detail of the grid between the three elements. The fronts do not break down and 
merge into each other smoothly. Only very few triangles with maximum angles exceeding 90' can 
be found. If fronts are aligned to each other, the the resulting point cloud is perfectly regular as 
between the main flap and the vane flap. The gradual increase in node spacing between the main 
aerofoil and the main flap is due to the automatic insertion of additional background nodes which 
are not present in the foreground grid. Overall, the cell surface varies very smoothly with a factor 
of about 100 000 from the smallest cells at the trailing edge of the vane flap to the largest cells at the 
outer boundary. The algorithms prove to be very robust, as can be seen from the regularity of the 
triangulation of the lower rear corner and the trailing edge of the main aerofoil in Figure 12. 

The only user input for the case were the 328 boundary nodes and a statement requiring no 
connection between the main aerofoil and the main flap. 

4. CONCLUSIONS 

A frontal mechanism for the creation of the interior nodes of a Delaunay triangulation has been 
developed. The method combines the high node distribution quality of the advancing front 
method with the optimal connectivity of the Delaunay triangulation. Precise control of node 
spacing is achieved by the use of the initial triangulation of the boundary nodes as a background 
mesh with no additional effort of the user. The node generation does not require explicit tracking 
of the front and is independent of the order in which triangles are listed. 

The resulting grids are very smooth and exhibit a high degree of regularity in cell shape and 
node distribution. This regularity is retained at singular points like corners or trailing edges 
proving the robustness of the method. The use of a background grid that is derived from the initial 
triangulation of the boundary nodes results in a smooth variation in cell size of many orders of 
magnitude. 

All features of this concept extend to three dimensions, where the optimal operation count and 
the simplicity of front tracking and node construction of the method become even more attractive. 
The method has been generalized to incorporate stretching to obtain a non-isotropic two- 
dimensional triangulation. Currently, a three-dimensional implementation is being worked on. 
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